
. USDR&E(DDT&E)

SOFTWARE TEST AND EVALUATION PROJECT

SOFTWARE TEST AND EVALUATION MANUAL

VOLUME I

GUIDELINES FOR THE TREATMENT OF SOFTWARE

IN TEST AND EVALUATION MASTER PLANS

PREPARED FOR

THE OFFICE OF THE UNDERSECRETARY OF DEFENSE
FOR RESEARCH AND ENGINEERING

DIRECTOR DEFENSE TEST AND EVALUATION

NAVAL AIR DEVELOPMENT CENTER

CONTRACT F33657-82-G-2083

U. S. ARMY MISSILE COMMAND
CONTRACT BOA DAAH01-85-D-A005 D.O. #0008

OCTOBER 1985

^i>^^ THE SOFTTTARE TEST AND EVALUATION PROJECT
SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

BMDOTIC

Report Number: GIT-ICS-85/26
Accession Number: 0558
Title: Software Test and Evaluation Manual,
Volume I: Guidelines for the
Treatment of Software in Test and
Evaluation Master Plans
Contract Number: F33657-82-G-2083 / DAAH01-85-D-A005
Corporate Author or Publisher: Georgia Institute of Technology,
Atlanta, GA 30332
Publication Date: Oct 01, 1985
Pages: 63
Descriptors, Keywords: Software Test Evaluation Defense
System Acquisition Master Plan TEMP

GIT-ICS-85/26

OSDR&E (DDT&E)

Software Test and Evaluation Project

Software Test and Evaluation Manual

\folume I

Guidelines for the Treatment of Software

in Test and Evaluation Master Plans

Prepared for

The Office of the Undersecretary of Defense
for Research and Engineering (OSDR&E)

Director Defense Test and Evaluation (DDT&E)

October 1985

Prepared by the Software Test and Evaluation Project, Georgia institute of
Technology, School of Information and Computer Science, Atlanta, GA 30332
under Naval Mr Development Center Contract Number F33657-82-G-2083 and U. S.
Army Missile Gonmand Contract Number BOA DAAB01-85HD-A005 D.O. #0008.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

GIT-ICS-85/26
2. GOVT ACCESSION NO 3. RECIPIENTS CATALOG NUMBER

4. TITLE (end Subtitle)

Software Test and Evaluation Manual
Volume I

Guidelines for the Treatment of Software
in Test and Evaluation Master Plans

5. TYPE OF REPORT & PERIOD COVERED

Final ReDort

6. PERFORMING ORG. REPORT NUMBER
: GIT-ICS-85/26

7. AUTHORfsJ

Software Test and Evaluation Project

8. CONTRACT OR GRANT NUMBERfs.)
F33657-82-G-2083 and
BOA DAAH01-85-D-A005
D. 0. #0008

9- PERFORMING ORGANIZATION NAME AND ADDRESS

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, GA 30332

10. PROGRAM ELEMENT. PROJECT, TASK
AREA 6 WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS

NADC U.S. Army Missile Command
Warminster, PA 18974 Redstone Arsenal, AL

35RQa-5?3n

12. REPORT DATE

October 1985
13. NUMBER OF PAGES

63 + iv
U. MONITORING AGENCY NAME ft ADDRESSflt dlllerent Irom Controlling Ollice) 15. SECURITY CLASS, (ol this report)

unclassified

IS«. DECLASSIFI CATION/DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution Unlimited

17. DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, II dlllerent Irom Report)

Distribution Unlimited

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary and Identity by block number)

Software Test and Evaluation Manual, defense system acquisition,
Software Test and Evaluation Project (STEP), Director Defense Test and
Evaluation (0SD/USDR&E), Test and Evaluation Master Plans (TEMPs),
mission critical software, software intensive,risk, checklist, program offices,
independent test organizations, contractors

20. ABSTRACT (Continue on reverse side U necessary and identity by block number)

The Software Test and Evaluation Manual provides guidance to DoD components
in the area of software test and evaluation for defense system acquisition.
It was prepared by the Software Test and Evaluation Project (STEP) in response
to tasking by the Director Defense Test and Evaluation (0SD/USDR&E).

Volume I is intended to support the review of Test and Evaluation Master Plans
(TEMPs) for systems that contain mission critical software components, are

DD I JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified (over)

SECURITY CLASSIFICATION OF THIS PAGE (Mien Data Entered)

Unclassified
SECURITY CLASSIFICATION OF THIS PAGEfWhmn Dmlm Ent.rmd)

software intensive, or present software testing issues that significantly
frif S "■ consJsts of a checklist or series of questions that are keyed
note thafaTbrr/'n °f I T^' ""V" "«owrlnq set of explanatory *
;he%^^erres^onsfesCT;hea

m
neS 0" "" qUeStl'°nS and the «^««nce of

The primary audience for this manual consists of those individuals who are
responsible for evaluating TEMPs. However, it should a so prove usefSi 2

review, prepare, or provide data for inclusion in TEMPs.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGEflWun Dmlm Enlermd)

OFFICE OF THE UNDER SECRETARY OF DEFENSE

WASHINGTON. DC 20301

RESEARCH AND

ENGINEERING 18 September 1985
(DDTE)

MEMORANDUM FOR DISTRIBUTION

SUBJECT: Software Test and Evaluation Manual

The enclosed Software Test and Evaluation Manual is a two volume
reference set prepared by the Software Test and Evaluation Project (STEP)
sponsored by this office and is being sent to you for review, comment, and use
pending its publication as an official Department of Defense Manual. The goal of
the manual is to provide consistent guidelines for the preparation and evaluation
of Test and Evaluation Master Plans (TEMPS) for major software intensive systems
containing mission critical computer resources. In addition, this manual
summarizes the technological, organizational, and contractual issues that should
be addressed during the development and execution of a comprehensive and
effective program of software test and evaluation.

STEP was initiated by this office in 1981 to investigate the feasibility of and
make recommendations for improving Department of Defense Policy and
Guidance for Software Test and Evaluation. The principal policy vehicle for test
and evaluation is DoD Directive 5000.3, which also specifies the format and
function of the TEMP. The present manual is a key tool in an on-going program
aimed at improving the test and evaluation of major systems through improved
acquisition management and risk reduction procedures. This manual contains
important implementing tools which will be applied in support of existing and
planned policy for the test and evaluation of Software-Intensive Systems.

Subsequent reissues of this manual will reflect changes to DoD Directive
5000.3, implementing service regulations and standards, as well as improvements
made possible by an ever-advancing State-of-the-Art in Software Test and
Evaluation.

Comments and inquires are requested and may be addressed to:

OUSDRE,DDTE
Room 3E1060, The Pentagon
Washington, D.C. 20301-3110

CHARLES K. WATT
Acting Director
Defense Test and Evaluation

Enclosure

Contents

Section Page

Section 1. Notes to the User 1

Section 2. TEMP Outline, Software Checklist and Explanatory Notes . 3

Part I. Description 4

1. Mission 4
Note 0 5

2. System 6
Note 1 7
Note 2 9
Note 3 11

a. Key Functions 12
Note 4 . . . 13

b. Interfaces 14
Note 5 15

c. unique Characteristics 16
Note 6 17

3. Required Operational Characteristics 20

4. Required Technical Characteristics 20
Note 7 21

5. Critical T&E Issues 26
a. Technical Issues 26
b. Operational Issues 26

Note 8 27

Part II. Program Summary 28

1. Management 28
Note 9 29
Note 10 29
Note 11 31
Note 12 31

2. Integrated Schedule . . 32
Note 13 33
Note 14 33

Section Page

Part III. DT&E Outline . 34

1. DT&E to Date 34
Note 15 35
Note 16 37
Note 17 39

2. Future DT&E 40
a. Equipment Description 40
b. DT&E Objectives 40
c. DT&E Events/Scope of Testing/Basic Scenarios 40

3. Critical DT&E Items 40
Note 18 41

Part IV. OT&E Outline 42

1. OT&E to Date 42
Note 19 . 43

2. Future OT&E 44
a. Equipment Description 44
b. OT&E Objectives 44
c. OT&E Events/Scope of Testing/Basic Scenarios 44

3. Critical OT&E Items 44
Note 20 45

Part V. PAT&E 46
Note 21 47

Part VI. Special Resource Summary 48

1. Test Articles 48

2. Special Support Requirements 48
Note 22 49
Note 23 49
Note 24 49

Section 3. References and Glossary 51

References 51
Glossary 53

Index , 59

Software Test and Evaluation Manual

Volupe I

Qiidelines for rh» Tr^at™^ of Software in

Test and Evaluation Master Plans

section i
Notes to the User

This manual is intended to support the review of Test and Evaluation
Master Plans (TEMPs) for systems that:

1. contain mission critical software components,

2. are software intensive, or

3. present software testing issues that significantly affect risk.

The primary audience for this manual consists of those individuals who
are responsible for evaluating TEMPs. However, this manual should also prove
useful to program offices, independent test organizations, contractors, and
others who review, prepare, or provide data for inclusion in TEMPs.

The overall organization of Section 2 of this volume is keyed to the TEMP
structure defined by DoD Directive 5000.3, "Test and Evaluation" (December,
1979; Enclosure 2). It should be possible to evaluate a TEMP using this
portion of the document as a roadmap of the software issues that may arise.
Section 2 contains:

The TEMP and Software Checklist: The Checklist is a series of
questions keyed to the major paragraphs and sections of a TEMP. In
format, the questions are phrased to permit simple "yes" or "no"
answers. In practice, it is not necessary that every checklist
question be answered by the TEMP. That is, a checklist question may be
inapplicable to the system being reviewed. In other cases, checklist
questions that are not answered by the TEMP may indicate deficiencies.

Explanatory Notes: The Notes are brief commentaries on the checklist
questions and the significance of the possible responses to them. The
manual user needs to be aware that the Notes are of a general nature
and may not accurately reflect the intricacies of the technology used
in a given system. Nevertheless, the Notes describe issues that a
software engineer would raise in evaluating whether or not the software
has demonstrated, through extensive usage, testing, and repair, that it
meets design and user requirements. Therefore, these issues should be
of primary concern when evaluating a TEMP.

Each of the checklist questions references an explanatory note. The notes
appear on the page opposite the question that references them. This layout
has been chosen with the goal of minimizing the amount of "paging" required
when using this manual.

-1-

Section 3 consists of the References and Glossary. The Checklist and Notes
are not intended to be a "textbook" in software testing. Variations in
terminology and basic software definitions are accounted for in the Glossary.
Detailed discussions of technical natters that are mentioned in the Notes are
contained in the References.

-2-

section 2

TEMP Qitline. Software Checklist

Explanatory Wrtep

-3-

TEMP SecUpn/SufrsecUon Checklist Questions

Part I - Description

1. Mission. This section summarizes (Note 0)
operational need, mission to be
accomplished and planned opera-
tional environment and relates
directly to the Mission Element
Need Statement (MENS) and planned
system operational concept.

-4-

ft>te Q;

The description of the mission to be performed should be a statement of need
and operational concept. Software specific references are generally not
appropriate in this section. A possible exception may occur if the only way
to express the system operational concept is in software-oriented
terminology.

References for Note Ot [Redwine, Chapter II]

-5-

TEMP Section/Sufrsectipn Checklist Questions

Part I - Pescrtetipn.

2. System.. This section is a brief Does the system contain mission
description of the system critical computer resources?
including discussions of key (Note 1)
functions, interfaces, and
unique characteristics.

-€-

Note 1:

The term "Mission Critical Computer Resources (MCCR) ■ is defined by Section
908 of the FY 1982 Defense Authorization Act. MCCR include automatic data
processing equipment or services whose functions are critical to support:

— intelligence activities
— cryptologic activities related to national security
— command and control of military forces
— equipment that is an integral part of a weapon or weapon system
— the direct fulfillment of military or intelligence missions.

Computers for MCCR applications are exempted from the provisions of the
Brooks Act (P.L. 89-306). Acquisition policy for MCCR is defined by DoD
Directive 5000.29 ("Management of Computer Resources in Major Defense
Systems").

From a technical point of view, knowing whether or not the application
contains MCCR is often critical in determining the role that software plays
in controlling systems functions. Therefore, it is essential that the TEMP
be sufficiently detailed to answer this question.

If the system contains an MCCR application, the TEMP should allow an easy
determination of how critical software is to the essential mission functions.
One possibility is that mission objectives are achieved by special-purpose
computers or circuitry in which software instructions play no important role.
These situations are rare, since a key role of MCCR technology is to provide
for systems that are easily changeable (e.g., to adapt to changing threats).
Another possibility is that the system contains an MCCR application and that
software plays a significant role.

The kind, of MCCR application may point to areas in which special T&E
considerations should be taken into account. For example, there may be
secure functions whose implementations should be certified by the DoD
Security Center.

The nature of an MCCR application may also lead to management issues that
affect risk. For example, the use of MCCRs in some applications leads to
specialized Service standards and regulations; these may by themselves give
rise to T&E issues. The same considerations may also affect inter-agency
agreements for scheduling and budgeting and down-stream problems such as test
data-sharing and test-bed availability.

Even if the MCCR application involves neither software intensive applications
(cf. Note 2) nor mission critical software (cf. Note 3), there may be
significant software T&E issues. For example, in many real-time systems, a
degree of fault-tolerance can be gained by software (e.g., providing for
graceful degradation of communicating processors). System designers may have
ignored such opportunities and, as a result, the system may have few software
features that protect users from faulty hardware. In such an instance, the
lack of software features should be treated as a design flaw that will
ultimately reduce system availability.

References for Note Is [Grove], [Redwine, Chapter II], [STEP1],
[STEP5, Nelson], [STEP5, Stewart]

-7-

TEMP Section/Subsection Checklist Questions

Bart I - Description

2. £y_g£ejn. This section is a brief
description of the system
including discussions of key
functions, interfaces, and
unique characteristics.

Is the system softvrare intensive?
(Note 2)

-8-

Note 2;

If the system does not contain MCCR, the software may still contribute to
overall risk. (Non-MCCR applications are generally not subject to the
policies governing MCCR systems; see Note 1.) This is often the case when
the bulk of system development is devoted to software. An example of such a
system might be an automatic data processing (ADP) application in which the
system hardware is an off-the-shelf commercial product, but the software
needs to be developed to meet military requirements. In these situations,
the operational characteristics of the commercial hardware cannot be
transferred to the software (e.g., ease of maintenance for the hardware does
not alleviate potential maintenance problems for the software).

Other sources of risk arise when the software is likely to be difficult to
design or requires the use of new or undemonstrated software engineering
practices and tools.

Even if the system does not contain mission critical computer resources, it
is software intensive if it contains software that:

— dominates the development budget

— is large or complex relative to overall system size and complexity.

It is usually prudent to treat software intensive systems as if they
contained mission critical computers and software. For the T&E community,
these systems pose special problems. The framers of the system development
plans and the TEMP are responsible for ensuring that proper consideration is
given to the testing of the software in these systems.

One aspect of the TEMP that needs special attention for software intensive
systems — especially for non-MOCR systems — is the description of
functional capabilities that will be demonstrated by testing. For non-MOCR
systems, these may be related only remotely to operational mission
objectives. Therefore, these capabilities are easy to overlook at the system
level.

A careful review of required system characteristics and critical interfaces
(see Notes 5 and 7 below) to determine those that are traceable to software
requirements may be helpful. Functional areas in which non-MOCR software
plays an important role include the following:

— data base management
— communication and networking
— CAD/CAM and support software development
— training and simulation
— computer graphics and human interfaces
— decision support.

A system having functional capabilities in any of these areas — or having
significant interfaces with systems that provide these capabilities — is
probably software intensive. The test and evaluation of the software in
these systems should be planned and managed as if the system contained
mission critical software.

References for Note 2: [Bunyard], [STEPl]

-9-

TEMP geqUQP/SvfrgeCtion Checklist Questions

Part I - Description

2. System. This section is a brief Does the software implement
description of the system critical functions? (Note 3)
including discussions of key
functions, interfaces, and
unique characteristics.

-10-

Note 3:

An adequate risk assessment requires that this question be answered at the
system level. If the system contains mission critical computer resources
(see Note 1) or if it is software intensive (see Note 2), then the
capabilities to be performed by the software should be explicitly cited.
Failure to highlight software-implemented mission critical functions may lead
to tests that do not adequately assess conformance to technical and
operational objectives.

In addition, the laek_ of software-implemented functions may in some
circumstances be questioned. For example, a system that is supposed to be
capable of rapid adaptation but has only hardware implementation of its
critical functions may exhibit unacceptable availability characteristics in
operation.

The paramount issue that arises from a "YES" answer to this question is
whether the software has been given balanced treatment with other critical
system components. An early determination of the software-implemented
functions allows for careful design of testable software requirements and
specifications and the development of a systematic approach to software
testing. Experience has shown that when these considerations are pushed
later into the development/acquisition process, latent problems with the
software are more difficult to eliminate and the resulting systems are less
well-suited to their objectives.

Tb emphasize the balance that should be sought between the software and the
hardware components that implement critical functions, the term critical
software ccmponent will be used throughout this manual. A critical software
component is any portion of a computer program, any computer program, or any
collection of computer programs that fulfills a requirement for a Key
Function as described in the TEMP.

References for Note 3; [Redwine, Chapter III], [STEP1], [STEP3, Part 2]

-11-

TEMP Section/Subsection Checklist Questions

Part I - Description

2. System.

a. Key Functions; these are
functions that enable the
system to accomplish its
operational mission; this
description may include a
mission/function matrix
relating primary functional
capabilities that must be
demonstrated by testing to
the mission to be performed
and the concept of operation.

Does the Mission/Function matrix
identify primary functional
capabilities to be implemented by
the software? (Note 4)

Are the identified functions
implemented in software:

 New? (Note 4a)

 Automation or modification
of existing capabilities?
(Note 4b)

 Mature? (Note 4c)

-12-

Note 4;

Hie mission/function matrix (or equivalent narrative) is the primary source
of information about how the capabilities have been partitioned between
hardware and software. These partitions will be important in determining
required characteristics, in defining error/failure categories, and in
isolating and correcting deficiencies noted during testing. Therefore, it
may be important to determine that proper engineering studies have led to the
establishment of these partitions.

An understanding of the sources of risk in each of the software-implemented
functions identified in the mission/function matrix is an essential part of
the overall risk assessment. Some typical risk drivers are those which
influence the maturity of the software.

a. New Function; New software functions generally represent the highest
risk, since they involve not only the design of software, but also
the use of new concepts, theories and algorithms. These functions
are often found in applications of emerging critical technologies
such as artificial intelligence, distributed data processing, or
ultra-reliable computing. Often, these functions have only been
demonstrated in the laboratory and no operator personnel have been
exposed to the functions under realistic conditions. Questions of
suitability and performance are typical for these functions and the
early involvement of users and operational testers is encouraged.
Risk reduction procedures such as prototyping, simulation, and
evolutionary acquisition may also be appropriate.

b. Automation or Modification of Existing Capabilities; The transition
from manual functions to automated functions is notoriously hard to
manage. Functions performed by humans are usually difficult to
formally describe; it is therefore hard to test the conformance of
the automated capability to a set of technical specifications. On
the other hand, the functions themselves are generally mature, so
suitability in an operational setting is not a critical issue. There
should be a clear plan for determining the extent to which the
previously manual capability has been faithfully reproduced.

c. Mature Software: It is also possible that the software
implementation of the function is mature. This is generally the
lowest risk implementation of the function. Many modern software
design methodologies promote the reuse of software as a way of
improving overall software quality. If reusable software is
included, then the TEMP should discuss the extent to which previous
testing can be applied to the current implementation.

References for Note 4; [Redwine, Chapter II]

-13-

TEMP Section/Subsection Checklist Questions

Part i - Description

2. SESfcSB.

b. Interfaces; these are points Is software important to the
of interaction with other interfaces? (Note 5)
systems that are required to
accomplish the mission. Do the interfaces have software

implications? (Note 5)

-14-

N?te 5;

Electronic interfaces between systems are frequently responsible for
interoperability and communication. The impact of these interfaces on the
software should be discussed. It is unlikely that electronic interfaces can
be designed without significant software involvement.

For example, the software may be important to the successful implementation
of the interface. Even if the interface hardware is off-the-shelf, the
software is likely to be unique to the current system and is therefore of
higher risk. If the interface corresponds to a key function, then the
software should be treated as mission-critical (cf. Note 3).

Further, the interfaces may place additional requirements on the software.
For example, communicating systems of processors frequently require
specialized formatting of data for transmission. Such data formatting
functions are usually software-implemented. In many applications, there are
industry standards that can be invoked. If the interfaces place requirements
on the software, these should be discussed and (in an appropriate section) a
plan should be presented for ensuring that the requirements have been met.

References for Note 5; [Chou] (

-15-

TEMP Section/Subsection Checklist Questions

Pert i - Description

2. System.

c. Unique Characteristics;
these are aspects of the
system that make it better
than or different from
alternative systems, or
that lead to special test
requirements.

Does the system use software
engineering technology that:

 Affects risk? (Note 6a)

 Has lifecycle impact?
(Note 6b)

Are there any software character-
istics or aspects of the software
application that distinguish the
system from alternative systems?
(Note 6c)

-16-

tfote g:

The tools, methodologies and engineering techniques that are used to produce
operational software are key sources of risk in a development program.
Software contractors, for example, frequently compete on the basis of
software "methodologies" that combine management approaches and technologies
in unique ways. Therefore, some novelty in the system is to be expected.
However, the TEMP should discuss those novel aspects that might affect an
overall evaluation.

a. Affect Risk: A principal source of risk is the toolset or support
software used to construct the operational software. Examples of
support software and software tools range from any of the relatively
mature text editors that can be purchased off-the-shelf to the
special purpose compilers that produce object code for the
operational or target computers. The choice of high order language
(HOD used in the project is a frequent source of risk that may
contaminate the whole system. In particular, new HOL's increase risk
along several dimensions:

1. a "learning curve" effect limits the productivity of design and
implementation teams during early project phases,

2. the immaturity of the HOL compiler increases the likelihood that
software errors may be introduced during the implementation or
that inefficiencies in compiler-generated code may limit the
ability of the system to meet performance goals,

3. the suitability of the new HOL for the application may be
undemonstrated.

Sometimes independent risk reduction is available for support
software. For example, new Jovial and Ada compilers should have been
DoD certified before their use on the project. Evaluation of support
software should also specify what has not been assessed; for
instance, performance parameters of compilers are not typically
addressed during compiler validation. When these concerns are
important to the overall mission of the system, appropriate T&E
should be planned.

b. Lifecycle Impact; A common source of operational software problems
is the difficulty of maintaining and supporting the software once it
is deployed. The technology used to design and implement the
software may significantly affect this ability. Danger signals may
include the use of proprietary tools and techniques that will not be
available to engineers after system delivery. Alternatively, there
may be unique aspects of the design effort that positively affect
subsequent lifecycle cost and effort. One approach to reducing
long-term lifecycle risks is to enforce the use of common technology
throughout the development and operation of the software. It is not
uncommon for the project office to supply tools and support software
GFE to the contractor to ensure commonality. However, care should be
exercised to avoid Government liability in cases of inadequate
Government furnished tools.

-17-

TEMP Section/Subsection Checklist Ctiestions

Part I - Description

2. system.

c. tfoioue Characteristics;
these are aspects of the
system that make it better
than or different from
alternative systems, or
that lead to special test
requirements.

Does the system use software
engineering technology that:

 Affects risk? (Rote 6a)

 Has lifecycle impact?
(Note 6b)

Are there any software character-
istics or aspects of the software
application that distinguish the
system from alternative systems?
(Note 6c)

-18-

Note 6 (cont.):

Ideally, lifecycle characteristics of operational significance should
be listed as required characteristics of the system (cf. Note 7) and
tests should be planned to address the issues that arise from these
characteristics.

c- Distinguish from Other Systems; Two types of distinguishing
characteristics are important: those that differentiate the given
application from all others and those that distinguish the current
generation of the system from its predecessors.

Certain applications (e.g., those with nuclear implications) are
subject to requirements and certifications that are not levied on
other applications. Care should be taken to determine the extent to
which software is represented in these applications. The approach to
software testing taken in some of these applications may be
questioned. The descriptions of independent evaluations, validations
and certifications for these applications should define terms.
Typical questions to be raised are the following:

Does the cost of testing balance the "cost" of failure in this
application?

Does the testing approach require new or undemonstrated software
or hardware technology that in itself raises risk? (cf. Note 6a)

The system may also be unique to the extent that the software is
responsible for extreme performance or reliability goals. A proposed
system may raise quantitative requirements by one or more orders of
magnitude. During early program phases, clear demonstration that the
goals can be met should be provided. Adequate demonstrations can be
obtained by proof-of-concept prototyping, analytical studies, and in
some instances by non-standard acquisition strategies (e.g.,
evolutionary or P3I).

References for Note 6; [Redwine, Chapter III], [STEP3, Part 2]

-19-

TEMP Section/Subsection Checklist Questions

Part I - Description

3. Required Operational Character-
istics. Key operational
effectiveness and suitability
characteristics, goals and
thresholds.

4. Required Technical Characteristics.
Key technical characteristics, \
performance goals, and thresholds.

Note: The characteristics listed Are there operational or tech-
in 3-4 above should include, but nical characteristics that are:
not be limited to, the character-
istics identified in the Decision Unique to software?
Milestone documentation. Clearly (Note 7)
define these characteristics,
particularly in the areas of May have been overlooked?
reliability, availability, and (Note 7)
maintainability. Indicate program
milestones at which the thresholds
will be or have been demonstrated.

-20-

K>te 7;

A necessary component of system level test planning is the definition of
goals and thresholds for the critical software components. A TEMP for a
system that contains mission critical software should also describe the
primary indicators of the software's:

— conformance to written specifications (required technical
characteristics)

— operational suitability and effectiveness (required operational
characteristics).

A TEMP that fails to define these characteristics for critical software
components is deficient in that it has failed to set goals and thresholds for
the characteristics of mission critical functions.

Special care should be taken to ensure that required software characteristics
have been presented. A major reason for omitting references to software in
the required characteristics is that the software characteristics have
aspects that are unique to software technology. The framer of the TEMP may
have little experience in judging the relative importance of these
characteristics.

Another reason for not including software characteristics in the TEMP is that
they do not fit cleanly into the technical/operational definitions. In fact,
one distinguishing feature of software is that the goals and thresholds of
interest may blur the distinction between technical and operational
characteristics. In developing test plans and schedules, care must be
exercised to ensure that software characteristics are evaluated at the
appropriate Stage Of system development rather than at arbitrarily imposed
milestones, it is a mistake to wait until the hardware and software are
integrated to resolve outstanding software test issues (cf. Note 8). For
instance, some operational parameters associated with the software can be
reliably determined during development testing but cannot be measured
directly during operational testing.

Early evaluation of software characteristics should be an integral part of
the development process. Late treatment of the software opens the following
problems:

— error masking: hardware and software errors may in some instances
mask each other, complicating RAM analysis.

— error partitioning; without a reliable estimate of software failure
rates, the partitioning of operational errors/failures into hardware,
operator, and software failures may be subjective and inexact.

-21-

TEMP SgCtiPn/SufrSegtion Checklist Questions

Part I - Description

3« Required Operational Character-
istics. Key operational
effectiveness and suitability
characteristics, goals and
thresholds.

4. Required Technical Characteristics.
Key technical characteristics,
performance goals, and thresholds.

Note: The characteristics listed Are there operational or tech-
in 3-4 above should include, but nical characteristics that are:
not be limited to, the character-
istics identified in the Decision Unique to software?
Milestone documentation. Clearly (Note 7)
define these characteristics,
particularly in the areas of May have been overlooked?
reliability, availability, and (Note 7)
maintainability. Indicate program
milestones at which the thresholds
will be or have been demonstrated.

-22-

Note 7 (cont.):

As a guide to locating and evaluating required software characteristics, the
following examples should be taken into account.

1. Reliability; This characteristic is often a key indicator of
software suitability. It is very important to choose metrics and
measurement criteria that adequately reflect software reliability.
On the other hand, it should be recognized that software reliability
has unique aspects. Classical time-dependent reliability theory may
not apply to Software. Probability distributions are notoriously
ineffective in describing failure rates for software except in cases
where the true operational distributions of the inputs are known.
Observing software failures in integrated hardware/software systems
is difficult. Low reliability estimates for software that implements
critical functions should be questioned. If the software is
duplicated in multiple platforms, then failure rates are
multiplicative (since many instruction executions take place), and
even very low failure rates can result in significantly many
operational mission failures. The use of tests that exercise and
stress software components and demonstrate functional behavior in
simulated operational environments should be considered.

2» Availability and Maintainability; Hardware-oriented definitions of
availability and maintainability are seldom satisfactory for
software. Parameters such as mean logistic down time that take into
account spare parts requirements and transportation time do not
adequately capture software availability. Maintainability of
software incorporates repair and re-engineering, usually maintenance
is carried out at a Post Deployment Software Support (PDSS) facility
and factors limiting mean time to repair tend to revolve around
communications and the labor-intensiveness of the maintenance
process.

3. Human Factors: As an indicator of operational suitability, this
aspect can be evaluated early. The use of simulators, prototype
hardware, and operator personnel can give reliable indications of
software suitability in the laboratory setting. Early determination
of deficiencies allows correction through redesign of the software.
Late detection of unsuitable human factors in the software can raise
the cost of correction by one or more orders of magnitude.

4. Performance; The operational performance parameters may be
determined very early in the development process by technical
software characteristics. For example, the ability of a system to
track and engage multiple targets may be limited by the precision and
accuracy of the algorithms used in software design, the efficiency of
a frequently executed mathematical subroutine, or by the size of a
software buffer. Another performance threshold may be the ability of
the system to operate in a degraded mode above a certain threshold.
Such a performance parameter may be solely due to the "robustness" of
the software, a technical characteristic that indicates how well the
software operates when its input does not satisfy the input
specifications.

-23-

TEMP section/subsection Checklist Questions

Part I - Description

3. Required Operational Character-
istica. Key operational
effectiveness and suitability
characteristics, goals and
thresholds.

4. Required Technical Characteristics.
Key technical characteristics,
performance goals, and thresholds.

Note: The characteristics listed Are there operational or tech-
in 3-4 above should include, but nical characteristics that are:
not be limited to, the character-
istics identified in the Decision Unique to software?
Milestone documentation. Clearly (Note 7)
define these characteristics,
particularly in the areas of May have been overlooked?
reliability, availability, and (Note 7)
maintainability. Indicate program
milestones at which the thresholds
will be or have been demonstrated.

-24-

Note 7 (cont.):

In summary, "performance" —- as the term is commonly applied to
software systems — includes the quantified efficiency or capacity of
the programs. Even though the primary (system-level) characteristic
is operational, the best predictor of software performance is usually
technical.

References for Note 7; [APOTECIII], [IBM], [Meyers], [Perlis]

-25-

TEMP Sectjpn/Sufrsectipn Checklist Questions

Part I - Description

5. Critical T&E Issues Do the required software charac-
teristics raise unique or easily

a. Technical Issues; key overlooked T&E issues? (Note 8)
areas of technological or
engineering risk that must be
addressed by testing.

b. Operational Issues; key
operational effectiveness or
suitability issues that must
be addressed by testing.

-26-

Note 9;

A critical software T&E issue is any aspect of the software system's
capability that must be questioned before a system's overall worth can be
estimated. The software issues are of primary importance in reaching a
decision as to whether the system should advance into later programmatic
phases. This decision is to be based in part on the determination that the
goals and thresholds defined for the required software characteristics have
been met and, in any case, should be based on an assessment that software and
hardware risk have been balanced by the past and future T&E.

In addition to other discussions of software issues that may be present in
the TEMP, goals and thresholds should be associated with each issue that will
be addressed by testing. This will be the basis for judging the
effectiveness of more detailed software test plans and will provide the
framework for interpretation of software test results.

For example, a critical software T&E issue may be that the maintainability of
the software is to be validated (cf. Note 7). Maintenance of operational
software may require:

1. a PDSS or similar support facility that is adequate for the
re-engineering effort that may be required during maintenance

2. a logistics support network for transferring maintained software from
the PDSS to the fielded system

3. the skilled human resources necessary to re-engineer a large software
system under severe scheduling constraints.

The validation of software maintainability as an operational parameter (e.g.,
is the MTTR for critical software components sufficiently small to ensure
that system availability goals can be met?) leads to the following question:
is the test environment representative of the environment in which the
software will actually be maintained? The T&E outlines should provide a
detailed answer to this question. In the case of validating software
maintainability, the PDSS personnel should conduct the tests. Use of PDSS
personnel meets one objective of an operational test — use of typical
operator personnel in a typical operational environment — and also ensures a
realistic estimation of the maintainability characteristic.

As pointed out in Nöte 7, quantifiable progress toward goals is the most
desirable way of posing a critical issue. However, objective evaluations of
progress are oftentimes more important than ad hoc quantification. For
example, meeting a time dependent reliability goal R(t) = 0.97 for t hours of
operation is seldom meaningful for software, and any attempts to provide such
a statistical measure should be questioned. On the other hand, achieving an
observed mean time between operational mission failure (MTBOMF) of t hours is
meaningful and allows analysts to concentrate on validating the realism of
the test scenario, the software contribution to observed operational
failures, and other issues that help determine the indices of progress for
the software.

As further discussed in Note 7, issues should also be defined to expose
software uniqueness in the issues and should associate technical or
operational meanings to the issues, regardless of the standard (hardware)
interpretation.

References for Note 8: [Brown], [STEP1]

-27-

TEMP Section/Subsection Checklist Questions

Part II - Program Sunmary

1. Management. Outline the program
and T&E management responsibili-
ties of participating organiza-
tions. Highlight arrangements
between participants for test
data sharing, responsibilities
for test management decisions,
and management interfaces for
multiservice T&E efforts. Dis-
cuss the adequacy of the planned
test periods and schedule to pro-
vide confidence in test results.

Is there a manager with principal
responsibility for software in
the project office? In test
organizations? (Note 9)

Are the project offices and test
organizations aware of T&E that
will be carried out by parallel
organizations? (Note 10)

Are the results of tests of soft-
ware components available to sub-
sequent test groups? (Note 10)

-28-

Note 9:

Experience has shown that all aspects of software development and testing
progress more efficiently when a knowledgable software manager is present and
active. Software issues tend to cut across system issues. The program
management structure should ensure that software concerns are not left
unattended.

References for Note 9t [Brown], [STEP3, Part 2]

Note 10:

A number of DoD and non-DoD organizations carry out testing and validation
for both operational and support software (cf. Note 6a). These organizations
and the evaluations they carry out include the following:

— DoD Security Center (software security certification)

— National Bureau of Standards (software cryptolcgic certification for
Data Encryption Standard)

— Federal Software Testing Center (testing of compilers and support
software for conformance to specifications)

— Ada Joint Program Office, OUSDRE (validation and certification of Ada
compilers)

— Air Force Language Control Facility (validation and certification of
Jovial compilers, cataloging of tools for Jovial programming
environments)

— Product Engineering Services Office, OUSDRE (evaluation of FOT&E for
systems in production)

m addition several groups of testers may proceed independently. Contractors
may produce test results that are useful to independent Government testers.
Development testers may generate results of simulations that provide
indications of operational effectiveness to operational testers. Operational
test scenarios may be analyzed by development testers to determine software
test coverage. In each applicable instance, possibilities for test data
sharing and incorporation of independent certifications into the TEMP should
be questioned.

References for Note 10; [STEP3, Part 2]

-29-

TEMP Section/Subsection Checklist Questions

Part II - Program Summary

1. Management. Outline the program
and T&E management responsibili-
ties of participating organiza-
tions. Highlight arrangements
between participants for test
data sharing, responsibilities
for test management decisions,
and management interfaces for
multiservice T&E efforts. Dis-
cuss the adequacy of the planned
test periods and schedule to pro-
vide confidence in test results.

Is there evidence that available
sources of expertise have been
explored and that coordination
has been carried out with
programs designed to assist MOCR
software projects? (Note 11)

Are management aids (e.g., tools,
checklists, guides, and decision
support systems being used?
(Note 12)

Is there a plan to use electronic
mail/communications among
participating organizations?
(Note 12)

-30-

BatfiJI:

The effective utilization of existing software technology, practices, and
management techniques may be aided by the assistance of special programs in
DoD and the military Services.

Overall responsibility for coordinating software initiatives and technology
transition programs in DoD rests with the Director, Computer Software and
Systems (OUSDRE). These programs may offer human and technical resources to
assist MCCR software development efforts.

Army, Navy, and Air Force focal points for software programs vary. However,
the Joint Logistics Commanders (JLC) have established a computer resource
management board and each of the Services has appointed a Computer Resources
Manager (CRM). The CRMs are sources of information concerning
Service-specific programs and initiatives.

Sources of expertise in software matters related to software testing, during
all phases, in DoD are concentrated in the Office of the Director Defense
Test and Evaluation.

Within the Services, the Development Test Commanders and Operational Test
Commanders are the appropriate contacts for information concerning software
testing resources.

Program management descriptions should mention any such supporting activities
or clearly indicate that no additional sources of expertise are needed during
the current program phase.

References for Note 11; [Klucas], [STEP2, Appendix A]

Note 12:

Over the past several years, the technology to support management of software
projects has improved rapidly. Automated tools are available to estimate and
track project costs, schedule tasks and monitor their progress, and implement
a number of other management functions. In addition, checklists and manuals
such as this one have been developed for other aspects of software
acquisition. Finally, automated decision support systems with accompanying
databases, local area networks, wide-band communication capabilities,
workstations, and tools for supporting acquisition decision-making are
available commercially.

Software managers in project offices and test organizations should be aware
of the available technology and should have made a cost-benefit assessment of
the desirability of using such technology (cf. Note 11).

References for Note 12; [AFOTECI], [Watt]

-31-

TEMP SeCtion/gyfrgeCti-QP Checklist Questions

Part ii - Program summary

2. Integrated Schedule: Display Are key software subsystem
the integrated time sequen- demonstrations included in the
cing of T&E for the entire integrated schedule? (Note 13)
program and related key events
in the acquisition decision- Does the schedule show software
making process. Include such deliveries and tool availability
events as program decision dates? (Note 14)
milestones, key subsystem
demonstrations, test article
availability, first flights,
critical support resource
availability, critical full-up
system demonstrations, key
OT&E events, first production
deliveries, and initial
operational capability date.

-32-

Note 13:

The integrated schedule should include such events as key software subsystem
demonstrations and software test article availability. The schedule should
also include adequate allowance for repair and retest of software, as well as
time to perform the original tests. Failure to do so indicates that proper
planning for critical software components has not taken place.

References for Note 13; [STEP1]

Note 14:

Support resource availability should be displayed in the integrated schedule.
Software testing tools fall into this category and deserve special mention.
Since these tools are themselves software, their development and acquisition
are subject to many of the same risks as any other software development (cf.
Note 6a). The availability dates of these tools should be included in the
TEMP and/or tracked carefully by other means since a late delivery could
impact the entire system development effort.

References for Note 14; [STEPl], [STEP2, Part 31]

-33-

TEMP Section/Subsection Checklist Questions

Part III - DT&E Outline

This outline should discuss all DT&E
in sufficient detail so that test
objectives are related to the system
operational concept and are clearly
identified for each phase. Relate the
planned testing to the critical •
technical issues appropriate to each
phase. The following information
should be included:

1. DT&E to Date. A summary of DT&E
already conducted based on the
best available information.
Briefly describe test articles
with emphasis on how they differ
from planned production articles.
Emphasize DT&E events and results
related to required performance
characteristics, critical issues,
and requirements levied by earlier
OSD decisions. Highlight
technical characteristics or
specification requirements that
were demonstrated (or failed to
be demonstrated). Describe how
simulation models were validated.

Have operational characteristics
of the software that can be
demonstrated during DT&E been
identified? (Note 7)

Is there a plan for demonstrating
appropriate operational
characteristics of the software
during each phase? Quote 7)

Have planned levels of testing
been achieved? (Note 15)

Is the documentation that reports
software test results cited?
(Note 15)

-34-

Note 15r

It should be apparent from the description of the software tests conducted
and their results whether or not previous goals have been met and test
objectives have been satisfied. Vague references to "successful software
tests" or "no problems with the software" should not be acceptable. In order
to evaluate the progress of software testing to date, there must be explicit
reference to:

— a systematic, scientifically sound approach to carrying out the test

— the relationship between the systematic test approach and the test
objectives for the current phase

— the results of the test

— the plans for resolution of errors.

For example, during very early program phases, unit and module testing will
be conducted by contractors under government planning. The results of these
tests should be maintained by the contractor. The applicable Military
Standards may specify the content of these test results. If no format is
contractually specified, it may be desirable to inquire into methods whereby
test results can be summarized, archived, audited, and communicated to test
organizations conducting higher level tests (cf. Nöte 10).

Systematic tests at this stage can provide indications of progress toward
solving such issues as operational suitability (e.g., suitability of user
interfaces and coverage of software system requirements). 100% statement
coverage, complete functional tests, or random tests with specified input
distributions, durations, and confidence limits are examples of systematic
test approaches that can be carried out to support these objectives.

Higher level tests may cite other test approaches or the composition of lower
level tests, mention results of simulations, specify goals for continuous
operation under varying load, and define approaches to loading or stressing
software that demonstrate the performance limits of critical software
functions. In all of these cases, however, tests should not be considered
performed and software issues should not be considered resolved unless the
TEMP reviewer is convinced that the test methodologies cited have been
carried out to completion and that the results of the tests are available for
examination. Applicable Military Standards refer to Data Item Descriptions
(DID's) which specify the format and contents of higher level test results.

References for Note 15; [STEP2, Part 1], [STEP3, Part 3], [STEP5, Bowen]

-35-

TEMP Section/Subsection Checklist Questions

Part in - DT&E Outline

1. DT&E to Date. A summary of DT&E
already conducted based on the
best available information.
Briefly describe test articles
with emphasis on how they differ
from planned production articles.
Emphasize DT&E events and results
related to required performance
characteristics, critical issues,
and requirements levied by earlier
OSD decisions. Highlight
technical characteristics or
specification requirements that
were demonstrated (or failed to
be demonstrated). Describe how
simulation models were validated.

Have software deficiencies
revealed by DT&E been interpreted
in terms of required system
characteristics and critical
issues? (Note 16)

Is the evidence clear that hard-
ware and software failures have
been properly partitioned?
(Note 16)

Have demonstrated software
characteristics been highlighted?
(Note 16)

-36-

Note 16:

Software technology is notorious for its jargon. Jargon is especially
difficult to interpret in test reports. Phrases like "abend at location
11324" and "buffer overflow causing module JXAS115 to hang" describe test
events very precisely and may be helpful to software engineers engaged in
error location and removal — however, these phrases are not very meaningful
to system engineers. Rather than camouflage software deficiencies with
overly technical descriptions, software DT&E TEMP descriptions should
concentrate on technical goals, thresholds, and objectives. At each review
phase, the essential questions should continue to be: Were the ET&E
objectives met? If they were, with what degree of confidence were they met?
If they were not met, what was the specific behavior that led to the observed
anomaly?

Eforing operational tests, the relationships between test events, software
deficiencies, and unresolved test issues are more difficult to discover. In
fact, the recording of test results in the operational setting may not be
adequate for reconstructing the cause of a particular software failure.
Therefore, a failing during OT&E is not the overly technical descriptions of
software failures, but is rather the tendency to note a software anomaly with
so little supporting information that traceability to critical operational
T&E issues is not feasible (cf. Note 20).

Relating software T&E results to system-oriented T&E issues helps to ensure
that responsibilities for deficiencies are properly allocated between
hardware and software. The TEMP should provide evidence that this
partitioning of errors has been the result of competent analysis. Claims
that errors have been traced to either hardware or software should be
dismissed unless supporting arguments can be supplied. For example, a
processor chip may fail in an avionics system. However, if the software is
supposed to be fault-tolerant, the error should probably be charged to the
software as well as the hardware. Furthermore, the critical T&E issues
should address such instances of dual responsibility.

References for Note 16; [Brown], [STEP5, Blackledge]

-37-

TEMP section/Subsection Checklist Questions

Part in - PRE outline
1. ET&E to Date. A summary of DT&E

already conducted based on the
best available information.
Briefly describe test articles
with emphasis on how they differ
from planned production articles.
Emphasize DT&E events and results
related to required performance
characteristics, critical issues,
and requirements levied by earlier
OSD decisions. Highlight
technical characteristics or
specification requirements that
were demonstrated (or failed to
be demonstrated). Describe how
simulation models were validated.

Have the differences between the
software tested and the planned
operational software been
emphasized? (Note 17)

Was the test environment (e.g.,
development, operational, or
•maintenance) appropriate for the
characteristics to be
demonstrated? (Note 17)

-38-

Note 17t

It is not unusual to find significant differences between the software during
early stages of development and the software that will eventually be
deployed. In extreme cases, the programming language may even change. More
common are the many provisions that are useful for conducting such tests as
unit and module tests, software integration tests, and software system
function tests. These include the following:

— Test Drivers or harnesses to simulate programs that control and feed
• data to the software being tested /

— Emulators to simulate the instructions of the operational hardware or
target computer in the development environment or host computer

— Simulators for stimulating software inputs with realistic signals.

Insofar as the tests that use these techniques may be required to provide
adequate verification of designs, the test results are valuable. However,
care should be taken to track the course of the tested software between the
current test phase and its integration into system hardware. Any changes
(e.g., replacement of harnesses by operational software) that alter basic
functional characteristics will require retesting at a later date. In many
instances, comparison of these later tests with the current tests will be
useful for locating actual differences, so arrangements for archiving the
test activity (or reconstructing it) should have been made.

A parallel consideration is the nature of the test environment. While
questioning the fidelity of simulations and the performance implications of
target hardware emulations may be useful in other portions of the TEMP, the
same issues apply to software. In addition, the software environment may
have significant impact on the interpretation of the test results. For
example, the assessment of whether maintainability goals have been met is
complicated if the test environment does not correspond to the environment in
which the software will be maintained (cf. Note 8). Similarly, other
software characteristics may be influenced by even minor changes in the
environment. As noted above, there should be capabilities for revisiting the
software test issues addressed in the current phase of testing.

References for Note 17; [STEP2, Part 3], [STEP5, Blackledgel

-39-

TEMP Section/Subsection ChecKlist Questions

Part III - DT&E Outline

2. Future DT&E. Discuss all remain-
ing DT&E planned, beginning with
the date of the current TEMP
revision. Address separately
each remaining phase of DT&E,
including the following for each:

a. Equipment Description! Sum- _
mary of functional capability
and how it is expected to
differ <from the production
model.

b. DT&E Objectives; Summary of _
the specific DT&E objectives
to be addressed during each
phase. The objectives identi-
fied should be the discrete
major goals of the DT&E effort,
which, when achieved, will
provide solutions to critical
technical issues and demon-
strate that the engineering
effort is progressing
satisfactorily. If the OSD
decision memorandum requires
demonstration of specific
technical characteristics in
a given phase, identify those
characteristics.

c DT&E Events/Scope of Testing/ .
Basic Scenarios; Key DT&E
events planned to address the
objectives. In addition,
describe in sufficient detail
the scope of testing and basic
test scenarios so that the
relationship between the test-
ing and the objectives, and
the amount and thoroughness of
testing are clearly apparent.
Discuss RAM testing and define
terms.

3. Critical DT&E Items. All items
the availability of which are
critical to the conduct of
adequate DT&E prior to the next
decision point.

Have differences between the
software to be tested and the
planned operational software been
summarized? (Note 17)

Are software DT&E test objectives
traceable to required software
characteristics and critical T&E
issues? (Note 7, Note 8)

Will the planned software testing
demonstrate the required charac-
teristics? (Note 18)

Are any new software subsystems
needed for DT&E prior to the next
decision point? (Note 13)

Are any new software support
systems or tools needed for DT&E
prior to the next decision point?
(Note 14)

-40-

Note 18:

There should be a clear relationship between the test objectives and the
software tests that are planned (cf. Note 15). Testing by "bulk" is seldom
effective for software. On the other hand, statistical methods that attempt
to predict the amount of software testing required are error-prone and their
use should be carefully examined.

Quantitative, time-dependent goals (e.g., a fixed mean time between software
failures) are difficult to demonstrate during ET&E. If quantitative
information is unavailable during early phases, a second choice is to
associate qualitative characteristics with quantitative goals. For example,
knowing that a software reliability requirement is extremely high is usually
more important than knowing that the goal is R(t)=0.997. In this case, tests
should ensure that every software instruction has been executed, that all
likely logic paths have been tested, that a strategy has been adopted for
determining that fatal coding defects do not remain, and that all required
software functions have been demonstrated. Since identifying and isolating
logic paths is expensive, the adoption of such a test should be reserved for
software components in which reliability is a critical issue. On the other
hand, requirements may imply that the correct functioning of the software is
so critical that very sensitive tests are needed. In these cases, the nature
of the test and its relationship to the objective should be clearly
justified.

Expense is by itself not a useful parameter in judging the effectiveness of a
test for demonstrating a particular characteristic. For instance, many
projects include a requirement for software endurance tests such as 25 hours
of continuous operation. Such test are expensive, but they are seldom
effective in uncovering software defects. Random sampling of software inputs
is relatively inexpensive. However, when sampling distributions are known
with a high level of confidence, results of random tests are good estimators
of operational reliability.

In contrast to DT&E, quantitative time-dependent measurements are a principal
result of OT&E. Even so, special care must be exercised to ensure that
measurements properly reflect the software's operational suitability and
effectiveness. Care must also be exercised when determining whether or not
the software's contributions to overall system RAM and performance
measurements have been adequately represented. For example, this
determination is dependent upon the existence of enough visibility into the
software during OT&E to ensure that the software contribution to OT events
can be accurately assessed.

In most cases, the exact nature of the software test will not be apparent in
the TEMP. The TEMP evaluator should be prepared to acquire whatever degree
of detail is necessary to determine whether a given test objective can be
met. A guiding principle, however, should be that ad hoc, unsystematic tests
are usually not effective.

References for Note 18; [Adrion], [STEP2, Part 2], [STEP5, Bowen]

-41-

TEMP Section/Subsection Checklist Questions

Part iv - QT&E Outline

This outline should discuss all OT&E
from the earliest IOT&E through the
FOT&E during initial production and
deployment. Test objectives should
relate the planned testing to the
critical operational issues. Defi-
ciencies in the production system
should be identified. The following
information should be included in
similar format and detail as in the
DT&E outline (Part III):

1. OT&E to Date. A summary of OT&E
already conducted based on the
best available information.
Briefly describe test articles
with emphasis on how they differ
from planned production articles.
Emphasize OT&E events and results
related to required performance
characteristics, critical issues,
and requirements levied by earlier
OSD decisions. Relate the test
conditions and results to the
operational effectiveness and
suitability of the system being
acquired.

Have software issues left
unresolved during DT&E been
addressed? (Note 19)

Has DT&E of operational
characteristics been related to
operational goals? (Note 19)

Have software deficiencies
revealed by OT&E been interpreted
in terms of required system
characteristics and critical
issues? (Note 16)

Is the evidence clear that hard-
ware and software failures have
been properly partitioned?
(Note 16)

Have demonstrated software
characteristics been highlighted?
(Note 16)

Have differences between the
software tested and the planned
operational software been
emphasized? (Note 17)

Was the test environment (e.g.,
development, operational, or
maintenance) appropriate for the
characteristics to be
demonstrated? (Note 17)

-42-

Note 19;

Experience has shovm that unresolved software DT&E issues are difficult to
resolve during OT&E. Proceeding to dedicated operational tests with software
that has not met its technical goals greatly increases the probability that
expensive and time-consuming reworking will be required. On a cost basis
alone, there may be an order of magnitude difference between DT&E and OT&E.
Every attempt should be made to solve software problems before integration of
the software and hardware (cf. Note 7).

It should also be recognized that a blurring of OT&E and DT&E may have taken
place. For example, the suitability of the user interface may have already
been validated during an early development test. The OT&E to date summary
should review the significance of any such development tests on operational
test issues. Included in this discussion should be an indication of whether
the operational test objectives have been satisfied.

References for Note 19; [STEP5, Blackledge]

-43-

TEMP Section/Subsection Checklist Cuestions

Part XV - QT&E outline

2. Future OT&E. Discuss all remain-
ing OT&E planned, beginning with
the date of the current TEMP
revision. Address separately
all remaining OT&E, including
the following:

a. Equipment Description; Sum- _
mary of functional capability
and how it is expected to
differ from the production
model.

b. OT&E Objectives; Summary of _
the specific OT&E objectives
to be addressed during this
OT&E. The objectives identi-
fied should be the discrete
major goals of the OT&E effort,
which, when achieved will
provide solutions to critical
operational issues.

c. QT&E Events/Scope of Testing/ .
Basic Scenarios; Key OT&E
events planned to address
the objectives. In addition
describe in sufficient detail
the scope of testing and basic
test scenarios so that the
relationship between the test-
ing and the objectives, and
the amount and thoroughness of
testing are clearly apparent.

Discuss the degree to which the
test environment, including
procedures and threat simulations,
is representative of the expected
operational environment. Discuss
the RAM testing concept and the
training and background of the
operational test personnel.

3. Critical CT&E items. All items
the availability of which are
critical to the conduct of
adequate OT&E prior to the next
decision point.

Have differences between the
software to be tested and the
planned operational software been
summarized? (Note 17)

Are software OT&E test objectives
traceable to required software
characteristics and critical T&E
issues? (Note 7, Note 8)

Will the planned testing
demonstrate the required software
characteristics? (Note 18)

Do the operational test analysts
include software-trained
personnel? (Note 20)

Does the RAM testing concept
address operational software T&E
issues? (Note 20)

Are any new software subsystems
needed for OT&E prior to the next
decision point? (Note 13)

Are any new software support
systems or tools needed for OT&E
prior to the next decision point?
(Note 14)

-44-

Note 20:

It is essential that some OT&E personnel have software expertise when the
system contains critical software components. It is also essential to
include software in the formal procedures for assigning causes to operational
events.

References for Note 20; [STEP3, Part 2]

-45-

TEMP gect;Lpn/Sufc>sectJ.QP Checklist Questions

Part V - Production Acceptance Test (Note 21)
and Evaluation (PAT&E)

-46-

N2fc£_21:

PAT&E usually presents few software issues. Notable exceptions to this rule
are those instances in which software plays a critical role in manufacturing
or production processes. In these cases, the relevant software may be
treated as though it were a critical system component.

-47-

TEMP Section/Subsection Checklist Qjestions

Part VI - Special Resource Summary

This section provides a brief summary
of the key resources for DT&E, OT&E,
and PAT&E that are unique to the
program.

1. Test Articles. Identity the
actual number of articles,
including key support equipment,
of the system required for testing
in each phase and for each major
type of T&E. If key subsystems
are to be tested individually
identify each subsystem and the
quantity required. Specifically
identify prototypes, pilot
production, and production
models.

Are critical software components
and key subsystems identified?
(Note 13)

2. Special Support Requirements. The
special support resources required
for T&E with a brief description
of the steps being taken to
acquire them.

Is there an explanation of how
test tools support software test
objectives? (Note 22)

Are adequate steps being taken to
acquire each tool? (Note 23)

Do any of the software testing
tools increase risk? (Note 24)

-48-

Note 32;

Most of the effective software testing techniques (cf. Note 18) require
automated support in the form of testing tools. Some tools such as test
drivers and file comparators are generic and can be used to support a variety
of techniques. On the other hand, many tools are specifically designed to
support a particular test methodology. The tools that have been chosen
should be appropriate to carry out the planned tests. The lack of identified
test tools is an indication that planned testing may be manual and therefore
more labor intensive and error-prone.

References for Note 22; [STEP2, Part 3]

Note 23;

Software testing tools are in short supply. Many of the most successful
tools are proprietary and must be acquired from private vendors. Several
other tools have been developed in DoD labs and not widely publicized. As a
last resort, the contractor, project office or test organization may develop
a new tool to support a specific software test.

Reference for Note 23; [STEP2, Part 3]

Note 24;

As described in Note 6, it is possible that the technology used in a testing
tool actually increases software risk. This is especially true when a tool
must be developed to support a test. In that case, all of the problems of
software development can occur in the acquisition of the new tool.

Other sources of risk are the technical risks associated with undemonstrated
technologies and the schedule/budget risks that result from the tools that
support some very sensitive test techniques. Another source of risk is the
adaptation of a tool from one environment or project to another.

References for Note 24; [Bunyardl

-49-

-50-

section 3
References and Glossary

References

[Adrion]

[APOTECI]

[AFOTECIII]

W. R. Adrion, M. A. Branstad, and J. C. Cherniavsky, "Validation,
Verification, and Testing of Computer Software," NBS Special
Publication 500-75, National Bureau of Standards.

"Software OT&E Guidelines," Volume I. Software Test Manager's
Handbook, Air Force Operational Test and Evaluation Center.

"Software OT&E Guidelines," Volume III. Software Maintainability
Evaluator's Handbook, Air Force Operational Test and Evaluation
Center.

[Brown] David R. Brown, "Software Needs Top-Down Management," Conceptst
The Journal of Defense Systems Acquisitionf Volume 5, Number 4
(Autumn, 1982), pp. 202-218

[Bunyard] MG Jerry Max Bunyard and James Mike Coward, "Today's Risks in
Software Development — Can They Be Significantly Reduced?"
Concepts; The Journal of Defense Systems Acquisitionf Volume 5,
Number 4 (Autumn, 1982), pp. 73-94.

tChou] W. Chou (editor), Computer Communications. Volume 1 —
PrinciplesP Prentice-Hall, 1983.

[Grove] H. Mark Grove, "DoD Policy for Acquisition of Embedded Computer
Resources," Conceptst The Journal of Defense Systems Acquisition
Management. Volume 5, Number 4 (Autumn, 1982), pp. 9-36.

[IBM] "Application Development and Maintenance Measurement and
Analysis," IBM Corporate Information Systems and Administration
Guideline, No. 103 (February 26, 1982).

[Klucas] Caspar H. Klucas, Larry A. Fry, John W. Barnes, Matthew Fisher,
"Joint Service Policy and Standards", Concepts; The Journal of
Defense Systems Acquisition Management. Volume 5, Number 4
(Autumn, 1982), pp. 191-201

[Meyers] G. J. Meyers, Software Reliability; Principles and Practices,
Wiley Publishers, 1976.

[Perlis] Alan Perlis, Fred Sayward and Mary Shaw, Software Metrics; An
Analysis and Evaluation. MIT Press, 1981.

[Redwine] Samuel T. Redwine, et al., "DoD Related Software Technology
Requirements, Practices, and Prospects for the Future," IDA Paper
P-1788, June 1984, Institute for Defense Analyses.

-51-

[STEP1]

[STEP2]

[STEP33

[STEP5]

tWatt]

R. A. DeMillo and R. J. Martin, "Software Test and Evaluation
Project Phases I and II Final Report: Volume 1. Report and
Recommendations," Director Defense Test and Evaluation.

"Software Test and Evaluation Project Phases I and II Final
Report: Volume 2. Software Test and Evaluation: State-of-the-Art
Overview," Director Defense Test and Evaluation.

"Software Test and Evaluation Project Phases I and II Final
Report: Volume 3. Software Test and Evaluation: Current Defense
Practices Overview," Director Defense Test and Evaluation.

"Software Test and Evaluation Project Phases I and II Final
Report: Volume 5. Report of Expert Panel on Software Test and
Evaluation" Director Defense Test and Evaluation. (Michael A.
Blackledge, "Acquisition Problems Influencing Software
Development and Operational Testing," pp. 116-122; John B. Bowen
and Marion F. Moon, "Experience in Testing Large Embedded
Software Systems", pp. 57-64; William P. Nelson, "Software
Quality Assurance and Acquisition Policy", pp. 105-111; Marilyn
J. Stewart, "Software Testing Standards - Policy and
Applications", pp. 99-104)

Charles K. Watt, "The Evolution of Information Systems," Journal
of Test and Evaluation. Volume V, Number 2 (April/July, 1984),
pp. 9-13

-52-

Glossary

Automatic Data Processing (ADP)

In its most general usage, this refers to any use of computers to process
information, usually, however, automatic data processing is contrasted
with MOOR applications; for example, personnel and payroll applications
are ADP while weapon systems are MCCR applications.

fiompile

The process of translating a computer program from one programming
language (the source language) to another (the object language).

Complete Functional Test

The process of demonstrating that each functional requirement is
satisfied by the software.

Critical Software Component

Any portion of a computer program, any computer program or any collection
of computer programs that fulfills a requirement for a Key Function as
described in the TEMP.

Critical Software T&E Issue

Any aspect of the software system's capability that must be questioned
before a system's overall worth can be estimated.

Data Base Manager

Software that is used to control and access large amounts of data that
are organized into data bases.

Data Item Description (DID)

A document that contains the format and content preparation instructions
for a contract deliverable consisting of data generated under work tasks
described within military standards.

Emulator

A program or device that simulates the execution of one computer by
another one.

-53-

Environment

As applied to software, an environment is the collection of
methodologies, tools, machines and management practices by which software
is engineered. Sometimes the environment is embodied in an extensive
piece of software; more frequently, the environment is a combination of
manual and automated procedures and methodologies. Environments may be
distinguished by lifecycle phase (e.g., development environment or PDSS
environment).

Evolutionary Acquisition

The structuring of the acquisition process to accommodate evolutionary or
incremental development.

The desired or expected value of a required software characteristic.

Government Furnished Equipment (GFE)

As applied to software, GFE refers to any software tool or system that is
supplied by the Government to a contractor.

High Order language (POL?

Any programming language that removes machine dependencies or permits the
expression of programming constructs in more natural terms than would
otherwise be possible. Common high order languages include Fortran,
Jovial, Ada, C, Pascal, and CMS-2.

Host Computer

The computer on which the software is being developed or tested.

Incremental Development

TJie process of designing, implementing, testing and delivering a software
product in increasingly complete increments.

Lifecycle

The structuring of the phases and activities of the design,
implementation, and operation process as a function of time. No single
lifecycle adequately describes all software products. Model lifecycles
are contained in appropriate Service standards and the design documents
and standards of many software developers.

-54-

Maintenance

As applied to software, maintenance refers to the process of correcting
errors, modifying designs, and adding new capabilities. To avoid
confusion between corrective maintenance (correcting errors) and the
re-engineering of software products, the entire activity is sometimes
referred to as post-development or post-deployment software support
(PDSS).

Mature Software

Software which has demonstrated through extensive usage, testing and
repair of defects that it meets design and user requirements. An
indication of software maturity is the extent to which it is modified
after new tests.

Mean Time Between Operational Mission Failure (MTBCMF)

An operational mission failure is any system condition observed during
system operation under operational conditions that results in a failure
to meet one or more system mission objectives. These failures may be due
to hardware, software, or operator failures.

Mission Critical Computer Resources (MCCR)

See Note 1.

Mission Critical Software

Software that implements MCCR functions that are essential to the
performance of the system or mission objectives.

Module Testing

Often used interchangeably with unit testing. More often, module tests
refer to tests of independently compiled software routines against
technical specifications.

Post Deployment Software Support or Post Development Software Support (PDSS)

See Maintenance.

Preplanned Product Improvement (P3I)

An acquisition and design strategy that involves the scheduled and
planned enhancement of a system or product.

Proprietary Software

Software owned by an individual or organization that has placed
restrictions on the use or disposition of the software by others who do
not own it. These restrictions are usually imposed by the commercial
sector through licenses or other agreements that detail the rights to
which the licensee is entitled.

-55-

Prototyping

The process of producing an experimental version of a software system or
portion of a software system in order to evaluate one or more aspects of
the design.

Random Test

The process of supplying software input values chosen at random by
sampling from a fixed distribution.

Required Software Characteristics

Parameters that are the primary indicators of the software's conformance
to written specifications (the technical characteristics) and operational
suitability and effectiveness (operational characteristics). Ideally,
these characteristics should be quantitatively specified by the range of
minimally acceptable (threshold) and desired (goal) values of the
parameter.

Reusable Software

Existing software that can be inserted into use on a given system with
little or no modification.

software Engineering

The practice of designing and constructing software products using
disciplined, controlled, and monitored engineering techniques.

software Intensive

See Note 2.

Software Quality

The extent to which the software meets technical specifications, and user
needs and expectations. The totality of features and characteristics of
the software that bear on its ability to satisfy given needs.

Software Requirements

The statements of software systems capability that are the basis of
software design. The mechanisms for describing software requirements
vary among the Services. For details see MIL-STD-490 (Specification
Practices), DoD-STD-1679 (Weapon System Software Development), and
DoD-STD-2167 (Defense System Software Development).

Software Tool

A computer program that provides automated support for the development of
other software products. Typical tools include compilers, editors,
debuggers, testing tools, librarians, mail facilities, and various design
aids.

-56-

Statemalt Coverage

■Hie nurrber or percentage of program statements that have been executed
during testing. The utility of 100% statement coverage is that there may
be latent defects in coding lines that have not been executed during a
test.

Stress Testing

The execution of tests that attain or exceed maxima defined by one or
more software requirements.

Systematic Software Test

Any software test that involves the usage of a scientifically sound test
approach. Systematic approaches should be contrasted with ad hoc tests
that may specify procedures and activities only.

Target Computer

The operational computer.

Test Drivers

Software that is used to initiate or control the execution of the
software components being tested. The most common examples of test
drivers occur during unit and module tests when software subsystems are
controlled by generic test drivers that simulate subsystem calling
sequences and provide for data transfer in and out of the subsystem.

Test Harness

Test Driver.

Threshold

The minimally acceptable value of a required software characteristic.

thit Testing

Testing of small, logically coherent pieces of software (such as
subroutines) against technical specifications.

user interface

The (usually electronic) interface between the human and the software.

-57-

-58-

mxz

acquisition policy
7, 52

Ma
17, 29, 54

Ma Joint Program Office
29

Air Force Language Control Facility
29

artificial intelligence
13

automatic data processing
7, 9, 53

availability
7, 11, 20, 22, 23, 24, 27, 32, 33, 40, 44

Brooks Act
7

CAD/CAM
9

command and control
7

communication
15, 31

compiler validation
17

computer graphics
9

Computer Resources Manager
31

critical DT&E items
40

critical interfaces
9

critical OT&E items
44

critical software component
1, 11, 21, 27, 33, 45, 48, 53

cryptologic
29

data base
53

data item description
35, 53

data-sharing
7

Director Defense Test and Evaluation
31, 52

Director, Computer Software and Systems
31

distributed data processing
13

-59-

DoD Directive 5000.3
1

DoD Directive 5000.29
7

DoD Security Center
7

DoD-STD
56

DT&E objectives
37, 40

DT&E outline
42

DT&E to date
34, 36, 38

emulator
39, 53

endurance tests
41

error masking
21

error partitioning
21

fault-tolerance
7

Federal Software Testing Center
29

file comparators
49

functional tests
35

future DT&E
40

future OT&E
44

(FE
17, 54

goals and thresholds
20, 21, 22, 24, 27

harnesses
39

high order language
17, 54

human interfaces
9

industry standards
15

integrated schedule
32, 33

intelligence
7, 13

inter-agency agreements
7

interoperability
15

-60-

Joint Logistics Commanders
31

Jovial
17, 29, 54

Key Function
11, 12, 15, 53

logic paths
41

maintainability
20, 22, 23, 24, 27, 39, 51

maintenance
9, 23, 27, 51, 55, 56

mature
13, 17, 55

MIL-STD
56

military standards
35, 53

mission critical
1, 6, 7, 9, 11, 15, 21, 55

mission critical computer resources
9, 11, 55

mission objectives
7, 9, 55

mission/function matrix
12, 13

MTBOMF
55

MITR
27

National Bureau of Standards
51

networking
9

non-standard acquisition
19

operational environment
4, 23, 27, 44

operational suitability
23, 35, 41, 56

OT&E objectives
44

OT&E outline
42, 44

OT&E personnel
45

OT&E to date
42, 43

PAT&E
47, 48

performance
13, 17, 19, 20, 22, 23, 24, 25, 34, 35, 36, 38, 39, 41, 42, 55

-61-

Post Deployment Software Support
23, 55

Product Engineering Services Office
29

programming environments
29

proprietary
17, 49, 56

prototyping
13, 19, 56

quality
13, 52, 57

RAM
21, 40, 41, 44

random tests
35, 41

real-time
7

reliability
19, 20, 22, 23, 24, 27, 41

required operational characteristics
20, 21, 22, 24

required software characteristics
21, 23, 27, 56

required technical characteristics
20, 22, 24

risk
1, 7, 9, 11, 13, 15, 17, 26, 27, 49

robustness
23

simulation
9, 13, 34, 36, 38

simulators
23

software deficiencies
36, 37, 42

software design methodologies
13

software engineering
9, 16, 18, 56

software intensive
1, 7, 8, 9, 11, 56

software manager
29, 31

software reuse
13

software requirements
9, 11, 56, 57

software subsystem demonstrations
33

software T&E issues
7

software test article
33

-62-

software testing tools
33, 48, 49

special resource summary
48

statement coverage
35, 57

stress testing
57

support software
9, 17, 29, 48

T&E issue
7, 26, 27, 37, 53

TEMP
1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 24,
26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44,
46, 48, 53

test articles
34, 36, 38, 42, 48

test drivers
49, 57

test objectives
35, 40, 41, 42, 43, 44

time dependent reliability
27

training
44

unique characteristics
6, 8, 10, 16, 18

unresolved software DT&E issues
43

weapon
7, 53

-63-

